
Reflections in Real-Time Applications

Pascal Dario Hann∗

Technical University Vienna

Figure 1: A rendered scene showing different effects of light reflection, like mirror reflections, indirect illumination and soft shadows.
Reprinted from [Wikimedia 2017]

Abstract

The following Report provides a brief summary of a variety of
techniques used to incorporate reflections into real-time applica-
tions. The techniques focused on are: Planar Reflection, Envi-
ronment Mapping, Precomputed Radiance, Virtual Point Lights,
voxel-based algorithms, Screen Space Reflections and real-time
ray-tracing with NVIDIAS RTX technology.

Keywords: reflections, computer-graphics, real-time

1 Introduction

The process of light hitting a surface and getting bounced back is
what is called ”reflection”. This interaction follows a set of rules
given by the ”rendering equation” [Kajiya 1986], which provides a
formula to calculate the emitted radiance of a given point in space.
The variables that need to be taken into account are the incoming
radiance, the radiance being emitted by the surface the point lies
on and the material its made of, however the self-emitted radiance

∗e-mail: e01633018@student.tuwien.ac.at

plays no role in reflection. We can see in figure 2 how a surface’s
material affects it’s reflective property.

Figure 2: Mirror, glossy, and diffuse reflection. Left: the incoming
light is reflected in a single direction off a mirrored surface. Mid-
dle: the surface is polished, such as brass, reflecting light near the
reflection direction and giving a glossy appearance. Right: the ma-
terial is diffuse or matte, such as plaster, and incoming light scatters
in all directions. Adapted from [Haines and Akenine-Möller 2019]

As illustrated, perfectly smooth surfaces reflect a single incoming
ray of light into a single outgoing one. The rougher the material
gets the more the incoming light gets scattered in different
outgoing directions. The human eye perceives the sharp ”specular”
reflections created by smooth surfaces as mirrored scenery. The
scattered ”diffuse” reflections created by rough materials are
often forgotten when talking about reflections but the indirect
illumination these provide make up an essential part of a real
scenes total illumination, greatly affecting it’s look. Therefore,
emulating reflection in computer applications is vital in order
to achieve realistic scenes. This report summarises some of the
techniques employed for this task and compares their different
advantages and disadvantages.



2 Ray-Tracing

The intuitive approach to calculate reflections in computer applica-
tions is to simulate the physical behavior of light by shooting light
rays from the light-sources into the scene and following them along
every bounce they make. This method of following a ray is called
”ray-tracing”.
Numerous terms describing forms of ray-tracing are used nowadays
and it should be noted that no global standard terminology exists.
Many terms like ”ray-tracing”, ”ray-marching”, ”path-tracing” and
so on are often used interchangeably or with different meanings
throughout the literature. To build a common ground for the sake
of this report, the terminology used will be summarized here: ”ray
casting” is the process of finding the closest intersection of a ray
with scene geometry. A ray can be cast, for example from a light-
source, and is followed until it hits it’s first intersection point. ”ray-
tracing” [Cook et al. 1984] is the action of recursively casting rays.
When a ray is cast and hits it’s first intersection, a new ray is cast
from that point to the next intersection and so on until a termination
criteria is met. The direction a new ray is cast from an intersection
point can be set differently, correspondent to what one wants to
achieve through ray-tracing. For example, in context of reflection
computing, a ray might be recast along a reflection vector calcu-
lated from the incoming ray and the surface normal of the hit-point.
Using ray-tracing, rays can be shot from a light-source to calculate
the radiance they contribute to each hit-point.
As explained in the introduction, depending on a surface’s material
light-rays that hit it would need to be reflected into multiple new
rays that again would need to be traced themselves. In addition
an infinite amount of light-rays would need to be traced to simulate
real world illumination. The calculation of this complex light trans-
port would need an infinite amount of time which not only renders
it unsuitable for real-time applications but for any computer appli-
cation at all. In order to still use ray-tracing for the computation of
reflections in such applications limitations need to be set. For in-
stance, rays that only affect parts of the scene outside of the cameras
frustum do not need to considered. To address this, instead of trac-
ing rays from the light-sources through the scene, the process can
be reversed, tracing rays from the camera back to the light-sources.
When a light-source is hit by a ray, light is computed backwards
through every hit-point the ray encountered contributing the initial
light of the light-source plus the reflected light by the hit-points.
A method called ”path-tracing” [Kajiya 1986] addresses the prob-
lem of generating multiple rays at hit-points, by only allowing one
single ray to be recast and in a useful direction on top, resulting in
the name-giving path from start to finish of the traced ray. Blending
multiple paths for a pixel gives an accurate estimation of the pixel’s
radiance with improving quality the more paths are traced. Mod-
ern ray-tracers often use more than one ray or path per pixel and
use a randomised ”monte carlo” algorithm with a probability den-
sity function(PDF) to determine ”useful” directions for recast rays.
When the PDFs used are non-uniform this is called ”importance-
sampling” and when using number-theoretic methods rather than
random number generators the algorithm is called ”quasi-monte
carlo”. When dealing with scene non-boundary-based scene rep-
resentations where computing ray intersections gets more complex,
”ray-marching” can be used. It follows a ray in steps, ”marching”
along its direction. The steps can be regular or of differing size.
Please note that the terminology detailed here is oriented on the
one given in [Haines and Shirley 2019].
Even with limitations ray-tracing stays a costly process. The num-
ber of rays per pixel than can be traced even on modern hardware
is very limited and when dealing with a small frame budget less
costly techniques are needed. Some of these will be discussed in
the following sections.

3 Planar Reflection

One common approach to produce reflections in computer appli-
cations, besides ray-tracing, is rendering the scene another or even
multiple times from a different point of view to gain the light infor-
mation of the environment that needs to be reflected. The technique
making most direct use of this strategy is called ”Planar Reflec-
tion” [Diefenbach 1996]. Imagine a scene where the camera looks
at a reflective plane. To achieve accurate reflections on this surface
one simply needs to reflect the camera at the plane to get a new
camera looking through the surface area the original camera looks
at. The reflective vector of any given point on that area corresponds
to a matching pixel captured by the reflected camera. In addition
only a clipping plane aligned with the reflective surface needs to be
applied to the reflected camera to solely capture objects in front of
it. Now the new camera can be used to capture the reflections of the
plane, as illustrated in figure 3.

Figure 3: Diagram showing the setup for Planar Reflection. A sec-
ondary camera is placed in the scene, reflected about the plane.
The viewing frustums of both cameras are shown as dashed lines.
Reprinted from [Toft 2017]

This principle can be applied in different ways, one being a tex-
ture mapping approach, where the calculated reflections are stored
in a special texture which can then be applied to the reflector dur-
ing rendering. This method is rather straight-forward but requires a
separate texture for every reflector in a given scene. Another way is
to make use of the so called ”stencil buffer” and a technique called
”stencil testing” as described in [Diefenbach 1996]. In essence,
stencil testing allows labeling pixels during rendering, storing that
information in the stencil buffer. This way pixels can be masked
during further rendering passes, allowing to apply reflections gener-
ated by Planar Reflection to be rendered directly to the frame buffer
by applying a mask around the corresponding reflector. This elim-
inates the need for extra texture resources. Furthermore, stencil
testing can also help with another problem multi-pass approaches
pose: reflections of reflections. As the reflections are gathered from
a separate rendering-pass, other reflectors in the scene whose reflec-
tions have not been calculated during that pass will not show up in
the result. This can only be solved with recursively rerendering the
scene requiring a multitude of rendering passes increasing with the
number of reflectors and depth of interreflection targeted. Mask-
ing reflective surfaces with stencil testing allows rendering only
those during these recursive rendering passes increasing the pro-
cess’ efficiency. Still this approach gets impractical very fast when
the number of reflectors in a scene gets too big. Therefore, Planar
Reflection is best used for a limited amount of mirror-like surfaces
in a scene, where accurate reflection is crucial. The technique is not
well suited for computing the usually high number of diffuse reflec-
tors in a common scene and should be combined with others better
fitting to this task. In addition, this method only works well for pla-
nar objects, as more complex objects would need to be split up into
planar surfaces to perform Planar Reflection for each of them. This
would increase the number of needed rendering passes drastically,
in the worst case of a curved object, a pass for every pixel would be



required. Thus another method for calculating reflections found for
non-planar objects needs to be used. One such technique, similar in
essence to Planar Reflection, will be discussed in the next section:
”Environment Mapping”.

4 Environment Mapping

”Environment Mapping” [Blinn and Newell 1976] [Miller and
Hoffman 1984] describes the approach to store the environment of
a reflective object in a special texture, the so called ”environment
map”, so it can then be sampled, as seen in figure 4, during render-
ing to create reflections on said object. For this the 3D environment
of the object needs to be projected onto a 2D texture to be able
to sample it with the reflection vector of each point of the object
during rendering.

Figure 4: Sampling process of Environment Mapping techniques.
Reprinted from [Kilgard 1999b]

This sampling process offers a more efficient approach compared
to ray tracing techniques while still producing realistic results.

4.1 Spherical Environment Mapping

There are different approaches to environment mapping, mainly dif-
fering in the shape of the environment map. One approach uses a
spherical shape, sampling reflections from a single image warped
onto that shape, acting as the environment map. See figure 5 for a
visual representation of a spherical environment map.

Figure 5: Spherical environment map - the entire outer ring repre-
sents one single point in space. Reprinted from [Kilgard 1999b]

This approach makes it easy to sample reflections from the map
with the reflection vector of a given point in space, however, a rect-
angular 2D texture needs to be warped onto a spherical shape for
this process, resulting in distortions. The most noticeable one be-
ing at the back of the object, as the point exactly at the back of the

object is represented by the entire outer ring of the spherical envi-
ronment map. In addition, ”Spherical Environment Mapping” tech-
niques depend on the view-point as the reflections sampled of the
pre-defined texture on the environment map will remain the same
regardless of view-point. Even if they were not, the distortions on
the back of an object mapped this way, already make this approach
somewhat view-point dependent.

4.2 Paraboloid Environment Mapping

Another approach to environment mapping is the so called ”Dual
Paraboloid Environment Mapping” technique, presented by [Hei-
drich and Seidel 1998]. This method uses two images instead of
one and warps them onto two parabolas, one in front of the ob-
ject, facing the viewer and one on the back, oriented in viewing
direction. This way the technique achieves a view-independent en-
vironment map in addition to increased image quality compared
to sphere mapping since two images are used instead of one. The
downside of this process lies within the increase of needed mem-
ory space compared to. Furthermore, dual paraboloid environment
mapping also requires image warping which lowers the effective
resolution of the used images and is a costly calculation to perform.

4.3 Cubical Environment Mapping

The last form of environment mapping that shall be discussed
here is ”Cubical Environment Mapping” [Greene 1986] [Kilgard
1999b]. As the name suggests this technique relies on a cube
shape, using six images mapped to it’s inside as it’s environment
map, also referred to as ”cube map”. See figure 6 for visual
representations of a cube maps.

Figure 6: Cubical Environment Mapping - Each face of the cube
map is aligned with either the positive or negative direction of one
of the three axis of 3D space. Adapted from [Kilgard 1999b]

Synthesizing the environment information is more straight-forward
than with the other two map shapes: one only needs to take six im-
ages from the origin of the cube through each of its faces. No image
warping operations are required, which makes cube maps easier to
generate than other forms, while also utilizing the full image reso-
lution provided by the taken renders of the environment [NVIDIA
1999]. This balances the need of storing six images compared to
just one or two like with the other two techniques, since the same
effective resolution can be achieved with lower resolution images
of the environment.
The sampling process, mapping the three dimensional reflection
vector to the appropriate two dimensional texture coordinates on
the right image of the environment map, is a bit more demanding
than the sampling process of the other two environment mapping
methods as it involves some conditional jumps to determine which



of the six images to sample. However, with the use of hardware sup-
port introduced with NVIDIAs GeForce 256 GPU in 1999 [Kilgard
1999b] and the accompanying updates for both the OpenGL and the
Direct3D API - industry standards to this day - cubical environment
mapping can now be implemented very efficiently. Cube Maps are
like dual paraboloid environment maps view-point independent and
can be generated very easily, even in real-time if necessary, since no
image warping is involved.
Environment mapping in general shares the issue of interreflection
with Planar Reflection. As explained in section [3], this effect can
only be achieved with recursive generation an application of the en-
vironment maps, which requires multiple render passes increasing
with the number of reflectors affected.

4.4 Environment Map Linking

Using separate environment maps for every object in a scene and
regenerating all of them each frame is very costly depending on the
number of objects. Since environment mapping methods relying on
a cube or two parabolas as shapes are view-point independent they
do not need to be updated every frame as long as the environment
they map does not change. In addition instead of using separate
environment maps for every object, maps can be generated only
for distinct parts of a scene and objects can be linked dynamically
to them during runtime, as explained in [Sbastien Lagarde 2012],
drastically decreasing the number of maps needed. Different link-
ing strategies will be detailed in the following.

4.4.1 Object-based

A possible approach is to simply link each reflective object to its
nearest environment map. Static objects can be linked before run-
time while dynamic objects need to be linked dynamically. This
technique has three main disadvantages, however. Firstly, visible
seams are possible at the verge between environment maps as a
sudden change from one captured environment to another happens
at these positions. This problem is especially visible when the en-
vironment changes at a high frequency between environment maps.
The second problem is that objects that lie within multiple environ-
ments, must be split so they can be linked to the respective environ-
ment map, adding structural constraints to an application. Walls,
floors and ceilings are frequently prone to this problem. The third
problem is linking dynamic reflective objects. A jump between en-
vironment maps can be visible when a dynamic object switches
environment map. The first and third problem can be somewhat
compensated by blending adjacent environment maps in a weighted
manner, but because there is still a relatively big number of environ-
ment maps in use with this method, and blending needs to be per-
formed individually for objects in different positions this is a rather
costly solution and it does not solve those problems completely.

4.4.2 Zone-based

Another way is to divide a level into different zones which are typ-
ically wider than local environment areas used in the object-based
strategy. Each zone then gets assigned one single environment map,
which all objects are linked to when the viewer enters that zone.
Resulting out of their global positioning, zone environment maps
do only contain global environmental information without the local
details.
This strategy produces no seams because all objects share the same
environment map at every given time, however, jumps can be no-
ticed when the camera crosses from one zone to another. Weighted

blending between the zone maps can once again help to solve this
problem and because this does not have to be done individually for
every object in a different position, but only for adjacent zones, the
number of environment maps that need to be blended is relatively
small, turning this solution into a valid option in this scenario. The
main disadvantage here is the lack of detail in the reflections as
all objects are always linked to only one global environment map.
Local environmental details, like a local light for instance, are not
reflected.

4.4.3 Global and local without overlapping

Adding onto zone-based environment mapping, another approach
introduces a small number of local environment maps on top of the
global zone maps, preferably in areas with high local environmen-
tal detail. All objects are linked to the zone map of the zone the
camera is positioned in per default, but when it comes in range of
a local environment map all objects are linked to that one instead.
The local maps are placed with enough space between them so the
viewer must always pass through an area outside of any local en-
vironment map’s influence, returning all reflective objects linked
to the global zone map, before it can enter another local environ-
ment map’s influence volume again. This way seams are prevented
and the number of environment maps is still small enough to blend
them to counteract sudden jumps at changing points in the level.
With this method a higher level of detail than the one produced
by pure zone-based environment mapping alone can be achieved,
while still benefiting from it’s advantages. However, it also poses
a new problem: because every object is linked to a local environ-
ment map once the camera enters its influence, distant objects also
falsely reflect the local environment. This effect gets countered at
least to some degree by the blending with the global zone maps.

4.4.4 Global and local overlapping

Allowing multiple environment maps, global and local, to overlap
each other’s influence volume creates yet another approach. Here
environment maps only affect things inside of their reach, which
means this method can only be used with a deferred rendering ar-
chitecture which is explained in chapter 9 of [Pharr and Fernando
2005] - or something similar, because one would have to split all ob-
jects multiple times for all the areas of influence and their overlap-
ping parts too in a traditional rendering architecture. It also means
multiple different maps can be active at the same time like with
the object-based method sharing the possibility of visual seams in
reflected images at the edge of influence areas. Having the possibil-
ity of multiple environment maps affecting different objects brings
more accurate reflections, but, as explained, comes with a restric-
tion in rendering architecture.

4.4.5 Point of interest based

The last environment map linking strategy that shall be mentioned
here was presented in [Sbastien Lagarde 2012]. It uses multiple lo-
cal environment maps like the object-based method but introduces
a point of interest, which can be the camera, a player, or some-
thing else depending on context. In contrast to the object-based ap-
proach, this strategy does not link objects to the environment map
nearest to them but instead blends together the maps nearest to the
point of interest - weighing them the nearer they are - and links all
viewable reflective objects to the resulting environment map. This
produces no seams because only one environment map is applied
to all objects while still retaining detailed local information about



the environment. While sudden jumps can be visible when the least
contributing map - meaning the one farthest away from the point of
interest - changes, this can be avoided by cleverly placing the lo-
cal environment maps with this problem in mind. Point of interest
based environment mapping shares the problem of distant objects
reflecting inaccurate environment information with the combined
global and local approach without overlapping. Lagarde describes
several methods to fight this obstacle in [Lagarde 2012]. One ap-
proach is also good practise for any of the linking strategies involv-
ing local environment maps mentioned, namely implementing the
option for objects to override the system with an environment map
specific to that object, whose center should be aligned with the ori-
gin of that map. This way special objects, like for example perfect
mirrors, on which the shortcomings of a linking method would be
especially noticeable.

4.5 Parallax Corrected Environment Mapping

A general negative effect of having only a set amount of environ-
ment maps in central locations instead of one map per reflective sur-
face is posed by the sampling process, as it still uses the reflection
vector calculated from the view vector - from camera to object - for
querying the environment map. This assumes the map’s origin still
alignes with the reflection point, which, however, it most certainly
does not in this scenario, leading to retrieval of the wrong location
of the environment, as can be seen in figure 7. This false assump-
tion creates a displacement of the reflected environment, which is
called parallax effect. This is not only a problem when environment
map and mapped object are not aligned but also when environment
mapping large surfaces, like a floor or a wall, because a reflection
vector calculated somewhere away from the center of that object
does not point at the same geometry as it does when moved to the
center, which is essentially what happens when sampling an envi-
ronment map. The environment mapped in the environment map
would have to be infinitely far away to not produce this problem as
Chris Brennan explains in [Brennan 2002].

Figure 7: The Reflection vector ”R” does not point at the same point
”P” of the geometry when moved to the environment map’s origin
”C” after calculating it with the view vector ”V” from the camera.
Adapted from [Lagarde 2012]

In order to correct this error, information about the actual geometry
of the environment surrounding the environment map is required
to determine where a given reflection vector intersects with that
geometry. Knowing that point, the vector from the origin of any
environment map to that position can be used as the new parallax
corrected reflection vector, as illustrated in figure 9.
Since determining which object in a scene intersects a reflected ray
is not an easy task and would involve some sort of ray-tracing or
similar method which would be costly, an easier, more cost-efficient
approach is to approximate the geometry. The hallway of a build-
ing for instance could be approximated by a box-shape or some

other primitive that matches the environment, like a sphere or a
cube. This way the reflection vector must intersect with the approx-
imated geometry at some point which therefore can be calculated
efficiently.

Figure 8: Instead of simply using the reflection vector ”R”, the in-
tersection with the geometry’s approximation ”P” is calculated and
the vector from the environment map’s origin ”C” to P is used as
new parallax corrected reflection vector. Reprinted From [Lagarde
2012]

The quality of the corrected reflections obtained this way varies
with the accuracy of the approximation. The more complex an envi-
ronment’s geometry is the harder it gets to approximate with a prim-
itive shape, resulting in less precise reflections. While more com-
plex approximations can be chosen, this comes with an increased
demand on hardware.
Toft describes a way to implement parallax correction using the
depth buffer, to get the information about the scenes geometry
needed, in [Toft 2017]. The depth buffer stores the distance of
geometry along a camera’s z-axis in a texture, where every pixel
holds the value for exactly one point of that geometry. Using ray-
marching [2] this technique can produce quite precise results, again
at the price of performance. This method has similarities to a tech-
nique called ”screen space reflection” which also makes use of the
depth buffer and will be highlighted later in [7.2].

Like Planar Reflection, environment mapping can be used to accu-
rately simulate diffuse as well as specular reflections in dynamic
scenes. In contrast to Planar Reflection, its better suited for com-
plex or rounded objects as for big planes. Interreflection is difficult
to achieve with both techniques and environment mapping requires
an extra amount of texture storage. Linking strategies for limiting
the amount of maps used and different scene approximations vary-
ing in accuracy for Parrallax Correction each trade quality against
performance.

5 Precomputed Radiance

Methods that can calculate reflected light accurately offline
exist, so one intuitive approach is to simply precalculate scenes
beforehand and store lighting information in textures, which can
then be applied during real-time rendering. Ray-tracing techniques,
path-tracing for example can be used or another method called
”radiosity” [Goral et al. 1984], a recursive algorithm that makes
use of the ”finite element method” and is inspired by thermal
engineering techniques. As reflections are precomputed here, this
technique comes, however, not only with the cumbersome and
time-consuming pre-runtime calculation steps and a high amount
of texture storage needed, but on top of that, scenes rendered this
way have to be completely static and do not support any dynamic
objects or changes in light-sources, leaving the only interactivity
still possible: dynamically changing the view-port in walk-through
applications.



5.1 Precomputed Radiance Transfer

Somewhat better results concerning interactivity can be achieved
with ”precomputed radiance transfer” techniques [Sloan et al.
2002], which simplify the rendering equation [1] by making the
following assumptions: Firstly, like the radiosity technique all re-
flectors in the scene are assumed to have perfect ”lambertian” dif-
fuse materials. This simplifies the rendering equation because such
materials scatter light equally in all outgoing directions. Secondly,
all objects in the scene do not emit any light, removing that part of
the rendering equation as well. Thirdly, light-sources are assumed
to be infinitely far away which makes the incoming light direction
at a given point independent of its position breaking down the ren-
dering equation further. The next step is to break the simplified
equation down into two parts: the lighting function which basi-
cally describes the incoming light and the transfer function which
in return represents how a given surface reacts to that incoming
light. Both these functions are then projected into a linear com-
bination of base functions which is done in a precomputation step
and stored afterwards in an appropriate form like ”spherical har-
monics”, so that the approximated rendering equation resulting can
be calculated efficiently as a simple dot product during real-time
rendering. An understandable overview of this technique is given
in [Slomp et al. 2006]. Precomputed radiance transfer can nor-
mally only calculate diffuse reflections, however glossy ones can be
achieved with some additions. The technique supports any number
of light-sources without any increase in calculation and interreflec-
tion. When spherical harmonics are used as base functions even
some dynamic positional changes of the light-sources are possi-
ble, however, dynamic scenes stay impossible to calculate with this
technique and a time consuming precomputation step is needed.

6 Virtual Point Lights

A family of ”virtual point light” algorithms makes use of an
idea originating from Alexander Kellers technique ”instant radios-
ity” [Keller 1997] to overcome the limitations of complex precom-
putation for computing diffuse reflections in real-time. The essen-
tial approach is to cast a finite number of rays into the scene and
generate virtual point lights (VPLs) where these hit the geometry.
These virtual point lights simulate the indirect light being reflected
by the reflectors in the scene and can be rendered easily with tradi-
tional rendering methods. In the original instant radiosity method
an image with shadows, usually in the form of a ”shadow map”, is
rendered for every VPL separately and the final result is obtained
by summing these up with an accumulation buffer. The number of
particles to use for VPL generation can be varied with the compu-
tational power at hand, making this technique easily scalable. The
algorithm described by Keller uses the following rule to limit the
number of bounces made by the rays cast into the scene: Since the
diffuse reflectivity of real scenes only differs minimally from the
mean scene reflectivity ”p” - a number between 1 and 0 - the ra-
diant density of the scene can be approximated by stating that p
multiplied with the number of starting rays ”N” yields the number
of rays ”pN” that will be reflected and cast into the scene again,
while the rest will be absorbed. Of course, in the next step the new
number of total rays will be multiplied with p again, decreasing it
further. This process is iterated through until no more particles are
left and at every bounce a ray makes, a new VPL is created, limiting
the total number of VPLs ”M” to:

M <
∞

∑
j=0

p jN =
1

1− p
N

The initial rays are cast into the scene in a random, also called
”monte carlo” fashion, beginning at the light-source or light-
sources. Subsequent cast directions for reflected rays are obtained
by following the rules of diffuse light scattering. The exact math-
ematics can be read in [Keller 1997]. To account for the differ-
ent colors of the objects in the scene, the particles are assigned the
color of the light-source they are coming from initially, which is
then attenuated with the color of every object that is hit. The VPLs
generated get the current color of the ray they come from. This
way every hit surface contributes to the color of the simulated indi-
rect light. The technique of casting rays into a scene and bouncing
them from objects they hit is a form of ray-tracing. The advantage
of this form is that while the other forms start at the view-point
sending rays into the scene and recursively calculate the radiant
power of every point they hit with the ray reflected of that point, the
ray-tracing technique employed in instant radiosity does not need
to concern itself with a point it hits and generates a correspond-
ing VPL for beyond that interaction. Because of this. Keller also
describes a way to use instant radiosity efficiently with interactive
view-point changing walk-through applications: instead of casting
all rays anew in every frame, only one is, the images created from
the VPLs generated by that one traced ray are accumulated and that
image is then stored. ”N” images - depending of the computational
power available - are stored with their time of generation and then
accumulated for the current rendered frame. When a new path is
completed the oldest image is replaced by the new one, implicitly
performing temporal antialiasing.
So in theory instant radiosity can be used to compute multi-bounce
diffuse reflection in real-time without precomputation even for dy-
namic scenes, but the technique comes with its own set of problems:
Because of the monte carlo ray-tracing and limited number of pos-
sible VPLs, dynamic objects can show awkward behavior due to
a lack of temporal coherence in the positioning of the VPLs and
the fact that temporal antialiasing can not be done the same way as
described for walk-through applications with dynamically moving
objects, because older generated frames would not be accurate for
newly positioned objects. In addition, also because the number of
particles has to be limited and the cast directions are not dependant
on the view-point with classic instant radiosity, it can happen that
a portion of the generated VPLs is placed somewhere so they do
contribute to parts of the scene the viewer can see, while too little
VPLs are generated in viewable reach, resulting in poor visuals. To
solve this issue a variation of the original technique called ”bidi-
rectional instant radiosity” was presented in [Segovia et al. 2006],
which introduces a second type of VPLs that are cast not from a
light-source but from the camera. This process called ”reverse in-
stant radiosity” makes use of the fact that light propagates linearly,
to make sure reverse VPLs are placed at points in the scene that
can actually illuminate geometry seen by the camera, by allowing
cast particles from the camera to only bounce off once. The prob-
lem with these inverse VPLs is that their density and radiant power
need to be calculated separately. To get radiant power of an in-
verse VPL several random rays have to be cast from the inverse
VPL, then some traditional VPLs need to be created to finally cast
”shadow rays” between those two for the resulting radiance. See
figure 9 for an illustration of this algorithm.



Figure 9: a) Standard instant radiosity (IR). (b) Reverse IR. Green
points ”x1”(”Mc”) are points visible from the camera. Magenta
points ”x2”(”Ms”) are points visible from ”Mc” and the only pos-
sible VPL locations for the given point of view. Allowing only one
single bounce gives ”Ms”. Connecting ”Ms” to the light sources
gives the outgoing radiance field of the sampled VPLs. Reprinted
from [Segovia et al. 2006]

This is a costly operation and should be avoided if possible, so a
method is proposed which creates an even number of inverse and
traditional VPLs, determines which of them have most impact on
the viewable area, selects only those and uses them for the final ren-
der. This method produces more robust results in situations where
traditional instant radiosity could not, but it also adds to the cost of
the algorithm.
To increase efficiency [Laine et al. 2007] presented another deriva-
tion of instant radiosity: ”incremental instant radiosity” . This tech-
nique is based on reusing VPLs to save costly re-generation. To
reuse VPLs, every frame the validity of every VPL is determined
by their directional distribution measured from the light-source they
originated from and if they are still directly visible by the originat-
ing light-source.

Figure 10: VPL Validation - a) Paths are traced from a light-source
to generate VPLs at reflection/absorption points. b) A given points
radiant power is accumulated from all VPLs during rendering. c)
The light-source has moved, instead of recreating all VPLs, old
ones are validated. Only one VPL can no longer be seen by the
light-source and has to be recreated, the others can be reused. Po-
tential camera movement does not affect this step. From [2007]

Ideally the directional distribution of VPLs from their light-source
should be the same as the directional intensity distribution of that
source which would result in every VPL representing an equal frac-
tion of the sources outgoing power. Incremental instant radiosity
tries to stay as close to ideal VPL distribution as possible by re-
moving invalid ones and replacing them with new ones. Costly
re-generation is only performed for new VPLs, reusing previously
generated, still valid VPLs. Incremental instant radiosity might
have to be combined with bidirectional instant radiosity to account
for the visibility problems mentioned before. Overall this technique
can provide a substantial boost in efficiency for instant radiosity but
it depends largely on the light and view-port movement in an appli-
cation. When these factors change too fast, no or near to zero VPLs

can be reused, nullifying the benefits of this approach.
[Walter et al. 2005] developed a different way of saving compu-
tational power that can be applied to instant radiosity by clustering
VPLs into ”light cuts”. A global ”light-tree” - a binary tree contain-
ing all VPLs - is first generated. The leafs of the tree each represent
exactly one VPL and every node of the tree can be used as a cluster
for its children. The tree is built by grouping VPLs together based
on their spatial proximity and directional orientation as similarity
criteria. Instead of accounting for every VPL in a scene each clus-
ter or ”light cut” gets assigned a single representative VPL which
then is used during rendering. Clustering the VPLs has the added
benefit that it counters the temporal incoherence produced by VPL
redistribution explained earlier to some extent. Which clusters shall
be used is chosen dynamically each frame by a specified error cri-
teria, shifting the speed limitations of instant radiosity approaches
from the amount of VPLs in a scene to the amount of VPLs used
per pixel, improving scalability. This technique can greatly reduce
the number of VPLs that have to be accounted for during rendering,
increasing efficiency of an instant radiosity algorithm.
Best frame-rates for truly interactive dynamic scenes in real-time
applications with VPL approaches have been achieved with algo-
rithms that limit VPL generation to image-space. [Nichols et al.
2009] presented a hierarchical approach for so called ”image-space
radiosity”. They use ”reflective shadow maps”(RSM) [Dachs-
bacher and Stamminger 2005] for their VPL sampling process.
Shadow maps in general are essentially depth buffers rendered from
a light-source. Reflective Shadow Maps in addition store the re-
flected diffuse light of the light-source the map is generated for, at
every pixel of the shadow map. Building onto the splatting tech-
nique from [Dachsbacher and Stamminger 2006] to sample the
RSMs for VPLs, Nichols image space radiosity algorithm uses a
stencil buffer to mark parts of image-space with high frequency de-
tails to perform a rendering on multiple resolutions: finer for high
frequent parts of the scene and more roughly for low frequent ones.
This image-sapce approach reduces the cost of rendering signifi-
cantly and is combined with hierarchical VPL clustering similar to
the light cuts technique to further increase performance and coun-
teract temporal inconsistency. All efforts to save computational
power together make for a relatively fast, efficient rendering tech-
nique for diffuse reflections that can be used effectively in interac-
tive, dynamic, real-time applications. The biggest disadvantage of
only sampling image-space VPLs from the RSM is obviously that
off-screen information is not taken into account, so renders created
this way are just a rough approximation of the whole scene.
Bottom line, VPL-based techniques offer a method to achieve
multi-bounce diffuse reflections in dynamic real-time environ-
ments. Since the number of rays that can be traced is limited by
the frame budget of an application, the VPLs simulation is only a
rough approximation of the reflections in a scene. It is not accurate
enough to achieve specular reflections. Furthermore as described,
temporal inconsistency is a problem with VPL-based algorithms
and temporal antialiasing methods need to be employed.

7 Real-Time Ray-Tracing

Some techniques that employ ray-tracing in some form in real-
time were already mentioned up to this point. A method was
discussed that used ray-marching for intersection testing against a
depth buffer for parrallax corrected environment mapping [4.5] and
Virtual Point Light algorithms [6] also use ray-tracing for VPL gen-
eration. The techniques explored in the following subsections fur-
ther focus on ray-tracing to achieve reflections. In general one of
the biggest problems when using ray-tracing is intersection testing.
With traditional scene representations, namely polygons subdivided



in primitives, triangles most commonly, determining where a traced
ray hits scene geometry is a non-trivial task. The computation that
is needed to calculate this information are one of the biggest limita-
tions of ray-tracing algorithms performance. To solve this problem
different scene representations have been explored with the goal to
make intersection testing more efficient.

7.1 Voxel-based algorithms

One family of algorithms relies on”voxels” as scene representation
to efficiently test ray intersections against. A voxel can be described
as a three dimensional pixel. Like pixels are ordered in 2D grids
to form an image, 3D scenes can be divided into a 3D grid of
regularly sized voxels, as one can be seen in figure 11, implicitly
defining their spatial position. A voxel can hold different infor-
mation: ”binary” voxels can be represented by a single bit, where
0 means the voxel does not contain any geometry and 1 means it
does. ”Multi-value” voxels can store additional information like
color, material properties or normals, much like 2D textures. Fur-
thermore, ”boundary” and ”solid voxels” have to be differentiated,
where the first only store object surface information, the latter also
saves interior object properties.

Figure 11: Voxel-grid containing color information. Reprinted
from [Wikimedia 2015]

With voxel-based scene representations rays only need to be tested
against scene geometry that lies within a voxel the ray traverses re-
ducing intersection testing complexity. Prior to that, however, tech-
niques have to be found to generate such a representation from a
polygonal one, because most of the time scenes will not be modeled
with voxels, resulting from industry modeling application function-
ality. This has to be done efficiently in real-time if voxel-based
algorithms shall be used for dynamic scenes and should not involve
time consuming, cumbersome, precomputational steps. Different
strategies were developed to tackle this problem: An early approach
was to use different settings for the near and far plane of an octago-
nal camera to sample different slices from the geometry that needs
to be ”voxelized” [Fang and Chen 2000]. Building onto that ap-
proach [Crane et al. 2007] used a geometry shader to intersect the
scenes geometry with multiple regularly spaced planes to construct
a 3D voxel-grid. [Schwarz and Seidel 2010] introduced custom
”3D rasterizers” to leverage gpu power better than the conventional
2D rasterizer. Slicing algorithms unnecessarily sample the empty
space around non-boundary voxels. An alternative approach based
on ”depth peeling” [Li et al. 2007] splits the scene into layers and
renders the scene multiple times iterating through the layers start-
ing at the camera and traversing through to the farthest layer from
the camera. In every iteration, the current frame is compared to
the depth buffer of the previous render, checking if a voxel lies in
the current layer, by measuring how far away corresponding parts
of the geometry are. The depth complexity of a scene is usually
lower than the slices of a volume, resulting in less, but still multiple
needed rendering passes. [Eisemann and Décoret 2006] observed

that the conventional rendering pipeline already has to define a grid
- the rendered image - and must visit every primitive of a scene dur-
ing rasterization. Using that information they combined the depth
buffer and a RGBA texture to voxelize a scene using simple bit-wise
blending. This allowed for fast binary voxelization using only a
single rendering pass and the authors later presented how to use the
same method for solid voxelization [Eisemann and Décoret 2008].
[Thiedemann et al. 2011] propose a technique to achieve real-time
multi-bounce diffuse reflection for dynamic scenes by using voxel-
grids to represent scene geometry. Their voxelization method fol-
lows the same principle as depth peeling, but instead of dividing
an object into multiple layers they store the world-space position
of every point on the object in a ”texture-atlas”, also called ”sprite-
sheet”. This is a special texture that can store 3D world-space coor-
dinates by placing texels in specific locations of the texture. They
can compute this texture with the information of a single render-
passes depth-buffer. Then a special ”voxelization-camera” is used
to define the region that shall be voxelized. For each texel of the at-
las texture a corresponding vertex is placed in the camera’s frustum,
projecting the stored world-space coordinates into the voxel-grids
coordinate system. Each vertex corresponds to a voxel in the fi-
nal voxel-grid. The voxel-grids resolution directly depends on the
resolution of the atlas texture and because every valid texel - every
atlas texture also has invalid texels, resulting from the mapping of
the 3D world-space positions - corresponds to one placed voxel and
one drawn vertex during voxelization, the resolution of the atlas tex-
ture also directly limits performance. This technique is a bounding
voxelization algorithm as preferred for reflections, because interior
voxels can be ignored for light reflection. To avoid revoxelization
every frame, static objects of a scene are voxelized only once and
just dynamic objects are revoxelized at runtime.
To compute the indirect illumination, resulting from reflected light,
at a given point in space, several rays are shot into the hemisphere
along the point’s normal. The voxels along the ray’s path are tra-
versed until a voxel representing geometry is hit. The hit-point is
then ”back-projected” into a reflective shadow map of the scene’s
nearest light-source: the texel corresponding to the 3D position of
the hit-point is sampled from the RSM. That way the reflected di-
rect diffuse lighting on the hit-point is determined, which in return
is used as indirect light on the original point where the rays where
shot from, creating single-bounce diffuse reflection effects. To ac-
count for blockers between light-sources and hit-points, the texel
queried from the RSM is only used if its position is not farther away
from the hit-point than a specific error threshold. Otherwise direct
lighting at the hit-point is assumed as 0, meaning it does not reflect
any light on incident surfaces. As performance depends on how
long a ray is traced through voxel-space, a limit length for shot rays
is introduced, implicitly defining a sphere, with the limit length as
its radius, around a given point, in which incident geometry can
contribute to the indirect illumination of that point. Resulting from
that constraint, only near field indirect lighting can be computed by
this technique. See figure 12 for an illustration of this algorithm.



Figure 12: Near-field indirect light: To compute the indirect light
at a point ”x”, several rays are shot in the upper hemisphere. The
voxels along each ray are traversed until a hit-point is found. The
hit-point is then back-projected into the RSM to obtain the direct
radiance at this point. Indirect light is gathered from hit point ”A”,
because it is visible from the light source: The distance from hit-
point A to the RSM pixel position is smaller than the threshold.
Hit-point ”B” is in shadow of the direct light, because it’s position is
further away from the position stored in the RSM pixel than allowed
by the threshold. If no intersection point is found within the search
radius ”r”, the radiance can optionally be read from an environment
map, to simulate directional occlusion (point ”C”) Reprinted from
[Thiedemann et al. 2011]

With the technique from [Thiedemann et al. 2011] convincing dif-
fuse single bounce reflection can be achieved in real-time applica-
tions with fully dynamic scenes. However, the reflection are limited
to near-field geometry and noise and flickering artifacts plus tem-
poral incoherence issues are present problems with this approach
because the number of rays that can be used in real-time for com-
puting reflections is limited and they are shot in a random fashion.
Another voxel-based algorithm developed by [Crassin et al. 2011]
replaces the voxel-grid scene representation used by the previous
method with a hierarchical structure: a ”sparse octree” [Laine and
Karras 2010]. An octree is a tree data structure where every node
has eight children. In computer graphics the root node usually rep-
resents a whole scene and it’s children one eighth of it each and so
on. ”Sparse” octree nodes are only subdivided if they contain any
information, in this scenario geometry, saving memory. The vox-
elization method used in this specific technique directly builds the
voxel-octree without using any regular voxel-grids. To create it, the
polygonal source geometry of the scene is rasterized three times,
once along every 3D axis, using the traditional rendering pipeline.
The view-port resolution for these renders is set to the maximum
subdivision target for the octree and at least one fragment shader
thread for each potential leaf node. These threads each traverse the
tree from the node to its leafs in parallel, subdividing it if geometry
is found in a current node, until the resolution is exhausted when
the targeted maximum tree subdivision is reached. Like the pre-
vious method, only dynamic and semi-dynamic objects are revox-
elized every frame while static parts of the scene get voxelized just
once. The main clue of using a voxel-octree is that every node rep-
resents the light reflection behavior of its children. Complex calcu-
lations and interpolations are employed to store directional distribu-
tion functions, occlusion information in form of a percentage value
of blocked rays, material information and other miscellaneous data
appropriate in every node of the tree. The [Crassin et al. 2011]
technique also makes use of ray-tracing to compute reflections, but
in contrast to the previous approach they rely on the spatial and di-
rectional coherence of rays shot from a point in space into its facing
hemisphere, to adapt their ray-tracing approach.

Figure 13: Because of the spatial and temporal coherence of rays
shot from a point in space, they can be bundled into ray cones.
Adapted from [Crassin et al. 2011]

Instead of tracing single rays, bundles of spatially and directional
coherent rays are summarized into cones, as illustrated in figure
13, and only these are than traced, while making clever use of
the hierarchical octree scene approximation. The principle is
to step along a traced cones axis and gather samples from the
octree at the level of subdivision correspondent to the current cone
radius. The authors call this technique ”voxel cone tracing”. To
achieve reflections with this voxel cone tracing algorithm, the
incoming direct radiance from light-sources in the scene must
be distributed correctly in the octree first. To get there, as a first
step, a map similar to a reflective shadow map is rendered from
a light-source. Every pixel of that map basically corresponds to
one photon of light that needs to be bounced into the scene. The
maps resolution should be set higher than the octree’s maximal
subdivision, to ensure that the photons can be splatted on the
leafs of the tree without any visual gaps. After achieving accurate
lighting information on the lowest level of the octree this way, the
distribution to the higher levels is performed in a second step, the
exact details of can be read in [2011]. This process is performed
only when a light-source moves, while voxel cone tracing can use
the stored distributed values efficiently otherwise. See figure 14 for
an illustration of the algorithm.

Figure 14: From left to right: Render from light-sources. Bake
incoming radiance and direction into the lowest level of the octree
- Distribute information to higher levels - use voxel cone tracing to
compute reflections. Using a special cone along the reflected eye
ray makes glossy reflection possible. Adapted from [2011]

This technique achieves convincing real-time multi-bounce reflec-
tion effects for truly dynamic scenes. Both diffuse and glossy re-
flections with indirect highlights are supported and the method’s
performance is nearly independent of the scenes geometric com-
plexity because it operates entirely on the voxel-octree representa-
tion of it. Neither flickering artifacts nor noise is visible and the
algorithm produces temporal coherent results, all due to tracing all
cones subdividing a hemisphere, a point is facing, instead of single
random shot rays. Although all this is possible, the algorithm is
not as efficient as screen-space only techniques and because cone-
tracing is not entirely accurate perfect specular mirror reflections
are not possible.



7.2 Screen Space Reflection

Algorithms that operate primarily on screen-space have already
been mentioned in this report: parallax-corrected environment
maps that use screen-space depth information as a geometry
approximation for correction [4.5] and image-space radiosity [6]
were two examples of a family of techniques that use screen-space
depth buffers as efficient scene representation. The family of
screen-space algorithms in general uses the gained performance of
operating on already provided - by traditional obstruction culling in
standard rendering pipelines - depth information to employ forms
of ray-tracing to achieve global reflection effects. [Sousa et al.
2011] proposed ray-marching the screen-space depth information
for mirror-reflection in games.
[Wronski 2014] explains the problems of screen-space ray-tracing:
Firstly, information outside the view-port is not available meaning
that information is lacked if reflected rays exit the viewable area.
Secondly, information on the back of objects is also not available
because it can not be seen from the camera and thirdly, information
about parts of the geometry that is obstructed by other geometry
is also not available because, again, the camera can not see these
parts. See figure 15 for an illustration of these problems.

Figure 15: From left to right: rays are reflected outside the camera’s
frustum - information on the backside of objects when viewed from
the camera is not available - information that is obstructed by an ob-
ject is also not captured from the camera. Adapted from [Wronski
2014]

In general it is strongly adviseable to use some form of fall-back
when ray-tracing screen-space reflection(SSR) to not only gain ac-
curacy but also to avoid visual artifacts resulting from missing in-
formation.
SSR ray-marching methods, in style of [Sousa et al. 2011], is per-
formed in 3D with a limit to trace length. For every step along the
ray the point is projected into 2D screen-space to test if it is behind
the depth duffer, getting classified as a hit-point if it is. Because
of the projection from 3D to 2D several pixels of the depth buffer
are skipped while others get sampled multiple times. In the worst-
case of a ray being shot directly parallel to the viewing direction,
the same pixel may be sampled for every ray-marching step un-
til the maximum traced length is reached. This being inefficient,
[McGuire and Mara 2014] proposed an algorithm performed di-
rectly on the 2D depth buffer based on the digital differential ana-
lyzer(DDA) algorithm, the direct evolution from Bresenham’s 2D
line rasterization.
One way to overcome the missing depth information because of ob-
struction is to add multiple layers to the screen-space depth buffer.
Methods to acquire these have been touched upon in the this re-
port’s part on voxelization [7.1] since a layered depth buffer is ba-
sically the same thing as a voxel-grid representation if the layers
are spaced regularly, as illustrated in figure 16. Mentioned tech-
niques like slicing or depth peeling can be used to achieve layers,
but [Mara et al. 2014] propose a different approach to create a depth
buffer with 2 layers or how they call it, a two layered ”geometry-
buffer”(g-buffer).

Figure 16: A continuum of data structures on the content of the ho-
mogeneous clip-space view frustum. Traditional G-buffers(a) have
high ”xy”-resolution, minimal ”z”-resolution, and choose the clos-
est surface to fill each voxel. Traditional voxels (d) have medium
”xyz”-resolution and average surface properties within each voxel.
Adapted from [Mara et al. 2014]

They use a single render-pass from the main camera to generate
both layers simultaneously by using prediction techniques to ap-
proximate which parts of the geometry belongs in which layer. In
the same paper the authors build onto a screen-space radiosity tech-
nique devised by [Soler et al. 2010], by sampling their layered
g-buffer in a monte carlo fashion to compute fast approximate re-
flection effects, in similar fashion as reflective shadow maps. They
use a confidence value to determine points which samples are not
representative enough, because they lie on the back or side of an
object and neither layer of the g-buffer could capture its depth in-
formation. For these points an interpolation between the screen-
space radiosity and a fall-back solution like environment maps or
voxel-representation is calculated. This method is more efficient
for computing diffuse reflection effects than ray-tracing and can be
combined with it to gain specular reflection effects as well.
In general SSR algorithms offer an efficient way to compute real-
time multi-bounce reflections, but the lack of non-screen-space in-
formation can lead to visual artifacts and inaccurate visual effects.
These techniques should therefore be used in combination with
other reflection methods.

7.3 NVIDIA RTX Real-Time Ray-Tracing

In 2018 NVIDIA revealed their new line of ”RTX” GPUs [NVDIA
2018] which are engineered specifically towards ray-tracing
applications. Special ray-tracing cores are built into these GPUs
providing hardware support suiting ray-tracing needs. On top of
that Microsoft launched a new ray-tracing API ”DirectX Raytrac-
ing” [Stich 2018], or DXR in short, simultaneously to leverage
this new hardware-support for ray-tracing. DXR introduces a
new ray-tracing pipeline with the option to program it through
special ray-tracing shaders and functions. A ”ray-generation”
shader is used to start the pipeline, allowing for ray specification.
”Intersection shaders” define the logic for intersecting rays with
arbitrary geometry primitives. ”Any-hit shaders”, ”closest-hit
shaders” and ”miss shaders” are executed for the respective situ-
ation. Furthermore the pipeline includes generation and traversal
of an accelerated scene geometry representation, which can be
defined by the driver of the GPU. Existing drivers use bounding
volume hierarchies (BVLs) [Gunther et al. 2007] which not only
allow for hierarchically bounding primitives but also guarantee
bounded memory usage. DXR acceleration structures are divided
into two levels: Bottom-level and top-level acceleration structures.
Bottom-level structures contain geometry in the driver specified
form, BVLs for instance. Top-level structures contain one or many
low-level ones. While bottom-levels can compute ray intersections
fast they are expensive to generate and with top-levels it is the other
way around, so it is suggested to generate the bottom-levels with
the least possible overlapping [Wyman and Marrs 2019a]. As with
other geometry representations mentioned in this report like sparse
voxel-octrees, it is possible to only regenerate the acceleration



structure for dynamic parts of the scene, saving performance. See
figure 14 for a simplified view of the new DXR ray-tracing pipeline.

Figure 17: A simplified view of the new DirectX ray-tracing
pipeline, including the five new shader stages (in blue): the ray
generation, intersection, any-hit, closest-hit, and miss shaders. The
complexity occurs in the traversal loop (the large gray outline, most
of the figure), where rays are tested against bounding volume nodes
and potential hits are identified and ordered to determine the closest
hit. Reprinted from [Wyman and Marrs 2019b]

The RTX line of GPUs help with the generation of the acceleration
structure and with the intersection testing against it. In addition the
RTX cards support fast image denoising, leveraging AI technol-
ogy presented in 2017 [NVIDIA a]. The need for denoising arises
from the fact, that the number of rays used for real-time ray-tracing
is very limited even with the new cards and DXR API. Applying
reconstructive denoising filters to images rendered with a limited
number of rays, a complete image noise-free can be calculated with
much less rays than without. [Liu et al. 2019] successfully inte-
grated DXR into the modern game engine ”Unreal 4” and achieved
real-time performance by leveraging the hardware-supported DXR
ray-tracing pipeline combined with hardware-accelerated denois-
ing.

With ray-tracing most accurate reflection effects like multi-bounce
diffuse, glossy and specular reflection, caustics, occlusion and color
bleeding can be achieved. Performance is still an issue with ray-
tracing techniques and the number of rays per pixel than can be
traced in real-time remains very limited. Modern algorithms com-
bine ray-tracing with traditional rendering techniques to achieve
best performance for now.

8 Conclusion

This report has summarized an overview of different techniques for
computing reflections in real-time, discussing their different advan-
tages and disadvantages. In conclusion it can be said that all meth-
ods have different strengths and weaknesses, so more often than
not, it is advisable to use a combination of algorithms instead of
just one, to try and harness their strengths and eliminate their weak-
nesses.

Acknowledgements

I thank Konstantin Lackner and Theresa Bodner, who both greatly
helped me with the exposition of this report.

References

BLINN, J. F., AND NEWELL, M. E. 1976. Texture and reflection
in computer generated images. Communications of the ACM 19,
10, 542–547.

BRENNAN, C., 2002. Accurate environment mapped re-
flections and refractions by adjusting for object distance.
http://developer.amd.com/wordpress/media/2012/
10/ShaderX_CubeEnvironmentMapCorrection.pdf. [On-
line; accessed 16-May-2019].

CAULFIELD, B., 2018. Whats the difference be-
tween ray tracing and rasterization? https:
//blogs.nvidia.com/blog/2018/03/19/
whats-difference-between-ray-tracing-rasterization/.
[Online; accessed 28-March-2019].

COOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Dis-
tributed ray tracing. SIGGRAPH Comput. Graph. 18, 3 (Jan.),
137–145.

CRANE, K., LLAMAS, I., AND TARIQ, S. 2007. Gpu Gems 3:
Programming Techniques for High-performance Graphics and
General-purpose Computation, first ed. ch. 30, 633–675.

CRASSIN, C., NEYRET, F., SAINZ, M., GREEN, S., AND EISE-
MANN, E. 2011. Interactive indirect illumination using voxel
cone tracing. Computer Graphics Forum 30, 7, 1921–1930.

DACHSBACHER, C., AND STAMMINGER, M. 2005. Reflective
shadow maps. In Proceedings of the 2005 Symposium on In-
teractive 3D Graphics and Games, ACM, New York, NY, USA,
I3D ’05, 203–231.

DACHSBACHER, C., AND STAMMINGER, M. 2006. Splatting indi-
rect illumination. In Proceedings of the 2006 Symposium on In-
teractive 3D Graphics and Games, ACM, New York, NY, USA,
I3D ’06, 93–100.

DIEFENBACH, P. J. 1996. Pipeline rendering: interaction and
realism through hardware-based multi-pass rendering.

EISEMANN, E., AND DÉCORET, X. 2006. Fast scene voxelization
and applications. In Proceedings of the 2006 Symposium on In-
teractive 3D Graphics and Games, ACM, New York, NY, USA,
I3D ’06, 71–78.

EISEMANN, E., AND DÉCORET, X. 2008. Single-pass gpu solid
voxelization for real-time applications. In Proceedings of Graph-
ics Interface 2008, Canadian Information Processing Society,
Toronto, Ont., Canada, Canada, GI ’08, 73–80.

FANG, S., AND CHEN, H. 2000. Hardware Accelerated Voxelisa-
tion. Springer London, London, 301–315.

GORAL, C. M., TORRANCE, K. E., GREENBERG, D. P., AND
BATTAILE, B. 1984. Modeling the interaction of light between
diffuse surfaces. SIGGRAPH Comput. Graph. 18, 3 (Jan.), 213–
222.

GREENE, N. 1986. Environment mapping and other applications of
world projections. IEEE Computer Graphics and Applications
6, 11, 21–29.

GUNTHER, J., POPOV, S., SEIDEL, H., AND SLUSALLEK, P.
2007. Realtime ray tracing on gpu with bvh-based packet traver-
sal. In 2007 IEEE Symposium on Interactive Ray Tracing, 113–
118.

HAINES, E., AND AKENINE-MÖLLER, T., Eds. 2019. Ray Tracing
Gems. Apress. [Online; accessed 23-May-2019].

http://developer.amd.com/wordpress/media/2012/10/ShaderX_CubeEnvironmentMapCorrection.pdf
http://developer.amd.com/wordpress/media/2012/10/ShaderX_CubeEnvironmentMapCorrection.pdf
https://blogs.nvidia.com/blog/2018/03/19/whats-difference-between-ray-tracing-rasterization/
https://blogs.nvidia.com/blog/2018/03/19/whats-difference-between-ray-tracing-rasterization/
https://blogs.nvidia.com/blog/2018/03/19/whats-difference-between-ray-tracing-rasterization/


HAINES, E., AND SHIRLEY, P. 2019. Ray Tracing Terminology.
Apress, Berkeley, CA, 7–14.

HEIDRICH, W., AND SEIDEL, H.-P. 1998. View-independent
environment maps. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics Hardware,
ACM, New York, NY, USA, HWWS ’98, 39–ff.

HIRVONEN, A., SEPPÄLÄ, A., AIZENSHTEIN, M., AND SMAL,
N. 2019. Accurate Real-Time Specular Reflections with Radi-
ance Caching. Apress, Berkeley, CA, 571–607.

KAJIYA, J. T. 1986. The rendering equation. SIGGRAPH Comput.
Graph. 20, 4 (Aug.), 143–150.

KELLER, A. 1997. Instant radiosity. In Proceedings of the 24th
Annual Conference on Computer Graphics and Interactive Tech-
niques, ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, SIGGRAPH ’97, 49–56.

KILGARD, M. J. 1999. Improving shadows and reflections via the
stencil buffer. Advanced OpenGL Game Development, 204–253.

KILGARD, M. 1999. Perfect reflections and specular lighting ef-
fects with cube environment mapping. Technical Brief, nVidia
Corp.

LAGARDE, S., 2012. Image-based lighting approaches and
parallax-corrected cubemap. https://bit.ly/2M6VL7d. [On-
line; accessed 28-March-2019].

LAINE, S., AND KARRAS, T. 2010. Efficient sparse voxel octrees.
In Proceedings of the 2010 ACM SIGGRAPH Symposium on In-
teractive 3D Graphics and Games, ACM, New York, NY, USA,
I3D ’10, 55–63.

LAINE, S., SARANSAARI, H., KONTKANEN, J., LEHTINEN, J.,
AND AILA, T. 2007. Incremental instant radiosity for real-time
indirect illumination. In Proceedings of Eurographics Sympo-
sium on Rendering 2007, Eurographics Association, 277–286.

LI, W., FAN, Z., WEI, X., AND KAUFMAN, A. 2007. Gpu Gems
3: Programming Techniques for High-performance Graphics
and General-purpose Computation, first ed. ch. 47, 747–763.

LIU, E., LLAMAS, I., CAÑADA, J., AND KELLY, P. 2019. Cin-
ematic Rendering in UE4 with Real-Time Ray Tracing and De-
noising. Apress, Berkeley, CA, 289–319.

MARA, M., MCGUIRE, M., NOWROUZEZAHRAI, D., AND LUE-
BKE, D. 2014. Fast global illumination approximations on deep
g-buffers. NVIDIA Corporation 2, 4.

MCGUIRE, M., AND MARA, M. 2014. Efficient GPU screen-
space ray tracing. Journal of Computer Graphics Techniques
(JCGT) 3, 4 (December), 73–85.

MILLER, G. S., AND HOFFMAN, C. 1984. Illumination and re-
flection maps. Course Notes for Advanced Computer Graphics
Animation, SIGGRAPH 84.

NICHOLS, G., SHOPF, J., AND WYMAN, C. 2009. Hierarchi-
cal image-space radiosity for interactive global illumination. In
Proceedings of the Twentieth Eurographics Conference on Ren-
dering, Eurographics Association, Goslar Germany, Germany,
EGSR’09, 1141–1149.

NVDIA, C., 2018. Nvidia rtx platform. https://developer.
nvidia.com/rtx. [Online; accessed 22-May-2019].

NVIDIA. Nvidia optix ai-accelerated denoiser. https://
developer.nvidia.com/optix-denoiser. [Online; ac-
cessed 23-May-2019].

NVIDIA, C. Vxgi technologie. https://www.nvidia.de/
object/vxgi-technology-de.html. [Online; accessed 28-
March-2019].

NVIDIA, 1999. Opengl cube map texturing. https://www.
nvidia.com/object/cube_map_ogl_tutorial.html. [On-
line; accessed 28-March-2019].

PARKER, S. G., FRIEDRICH, H., LUEBKE, D., MORLEY, K.,
BIGLER, J., HOBEROCK, J., MCALLISTER, D., ROBISON, A.,
DIETRICH, A., HUMPHREYS, G., MCGUIRE, M., AND STICH,
M. 2013. Gpu ray tracing. Commun. ACM 56, 5 (May), 93–101.

PHARR, M., AND FERNANDO, R. 2005. Gpu Gems 2: Program-
ming Techniques for High-performance Graphics and General-
purpose Computation, first ed. Addison-Wesley Professional,
ch. 9, 143–165.

SCHWARZ, M., AND SEIDEL, H.-P. 2010. Fast parallel surface and
solid voxelization on GPUs. ACM Transactions on Graphics 29,
6 (Proceedings of SIGGRAPH Asia 2010) (Dec.), 179:1–179:9.

SEGOVIA, B., IEHL, J. C., MITANCHEY, R., AND PÉROCHE, B.
2006. Bidirectional instant radiosity. In Proceedings of the 17th
Eurographics Conference on Rendering Techniques, Eurograph-
ics Association, Aire-la-Ville, Switzerland, Switzerland, EGSR
’06, 389–397.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precom-
puted radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. ACM Trans. Graph. 21, 3
(July), 527–536.

SLOMP, M. P. B., OLIVEIRA NETO, M. M. D., AND PATRÍCIO,
D. I. 2006. A gentle introduction to precomputed radiance trans-
fer. Revista de informática teórica e aplicada. Porto Alegre. Vol.
13, n. 2 (2006), p. 131-160.

SOLER, C., HOEL, O., ROCHET, F., AND HOLZSCHUCH, N.
2010. A fast deferred shading pipeline for real time approximate
indirect illumination.

SOUSA, T., SCHULZ, N., AND KASYAN, N., 2011. Secrets of
cryengine3 graphics technology. http://www.klayge.org/
material/4_1/SSR/S2011_SecretsCryENGINE3Tech_0.
pdf. [Online; accessed 23-May-2019].

STICH, M., 2018. Introduction to nvidia rtx and di-
rectx ray tracing. https://devblogs.nvidia.com/
introduction-nvidia-rtx-directx-ray-tracing/.
[Online; accessed 28-March-2019].

SBASTIEN LAGARDE, A. Z., 2012. Siggraph 2012 and game con-
nection 2012 talk : Local image-based lighting with parallax-
corrected cubemap. https://seblagarde.wordpress.com/
2012/11/28/siggraph-2012-talk/. [Online; accessed 28-
March-2019].

THIEDEMANN, S., HENRICH, N., GROSCH, T., AND MÜLLER,
S. 2011. Voxel-based global illumination. In Symposium on In-
teractive 3D Graphics and Games, ACM, New York, NY, USA,
I3D ’11, 103–110.

TOFT, A., 2017. Fast, accurate reflections withparallax-
corrected cubemaps. https://www.addymotion.com/
files/dissertation-redacted.pdf. [Online; accessed
16-May-2019].

WALTER, B., FERNANDEZ, S., ARBREE, A., BALA, K.,
DONIKIAN, M., AND GREENBERG, D. P. 2005. Lightcuts:
A scalable approach to illumination. ACM Trans. Graph. 24, 3
(July), 1098–1107.

https://bit.ly/2M6VL7d
https://developer.nvidia.com/rtx
https://developer.nvidia.com/rtx
https://developer.nvidia.com/optix-denoiser
https://developer.nvidia.com/optix-denoiser
https://www.nvidia.de/object/vxgi-technology-de.html
https://www.nvidia.de/object/vxgi-technology-de.html
https://www.nvidia.com/object/cube_map_ogl_tutorial.html
https://www.nvidia.com/object/cube_map_ogl_tutorial.html
http://www.klayge.org/material/4_1/SSR/S2011_SecretsCryENGINE3Tech_0.pdf
http://www.klayge.org/material/4_1/SSR/S2011_SecretsCryENGINE3Tech_0.pdf
http://www.klayge.org/material/4_1/SSR/S2011_SecretsCryENGINE3Tech_0.pdf
https://devblogs.nvidia.com/introduction-nvidia-rtx-directx-ray-tracing/
https://devblogs.nvidia.com/introduction-nvidia-rtx-directx-ray-tracing/
https://seblagarde.wordpress.com/2012/11/28/siggraph-2012-talk/
https://seblagarde.wordpress.com/2012/11/28/siggraph-2012-talk/
https://www.addymotion.com/files/dissertation-redacted.pdf
https://www.addymotion.com/files/dissertation-redacted.pdf


WIKIMEDIA, C., 2014. File:brdf diagram.png — wiki-
media commons, the free media repository. https:
//commons.wikimedia.org/w/index.php?title=File:
BRDF_Diagram.png&oldid=123484143. [Online; accessed
20-May-2019].

WIKIMEDIA, C., 2015. File:voxelgitter.png — wiki-
media commons, the free media repository. https:
//commons.wikimedia.org/w/index.php?title=File:
Voxelgitter.png&oldid=159805689. [Online; accessed
22-May-2019].

WIKIMEDIA, C., 2017. File:box - path tracing high.png —
wikimedia commons, the free media repository. https:
//commons.wikimedia.org/w/index.php?title=File:
Box_-_Path_Tracing_High.png&oldid=263559945. [On-
line; accessed 24-May-2019].

WRONSKI, B., 2014. The future of screenspace re-
flections. https://bartwronski.com/2014/01/25/
the-future-of-screenspace-reflections/. [Online;
accessed 28-March-2019].

WYMAN, C., AND MARRS, A. 2019. Introduction to DirectX
Raytracing. Apress, Berkeley, CA, 21–47.

WYMAN, C., AND MARRS, A. 2019. Introduction to DirectX
Raytracing. Apress, Berkeley, CA, 21–47.

https://commons.wikimedia.org/w/index.php?title=File:BRDF_Diagram.png&oldid=123484143
https://commons.wikimedia.org/w/index.php?title=File:BRDF_Diagram.png&oldid=123484143
https://commons.wikimedia.org/w/index.php?title=File:BRDF_Diagram.png&oldid=123484143
https://commons.wikimedia.org/w/index.php?title=File:Voxelgitter.png&oldid=159805689
https://commons.wikimedia.org/w/index.php?title=File:Voxelgitter.png&oldid=159805689
https://commons.wikimedia.org/w/index.php?title=File:Voxelgitter.png&oldid=159805689
https://commons.wikimedia.org/w/index.php?title=File:Box_-_Path_Tracing_High.png&oldid=263559945
https://commons.wikimedia.org/w/index.php?title=File:Box_-_Path_Tracing_High.png&oldid=263559945
https://commons.wikimedia.org/w/index.php?title=File:Box_-_Path_Tracing_High.png&oldid=263559945
https://bartwronski.com/2014/01/25/the-future-of-screenspace-reflections/
https://bartwronski.com/2014/01/25/the-future-of-screenspace-reflections/

	Introduction
	Ray-Tracing
	Planar Reflection
	Environment Mapping
	Spherical Environment Mapping
	Paraboloid Environment Mapping
	Cubical Environment Mapping
	Environment Map Linking
	Object-based
	Zone-based
	Global and local without overlapping
	Global and local overlapping
	Point of interest based

	Parallax Corrected Environment Mapping

	Precomputed Radiance
	Precomputed Radiance Transfer

	Virtual Point Lights
	Real-Time Ray-Tracing
	Voxel-based algorithms
	Screen Space Reflection
	NVIDIA RTX Real-Time Ray-Tracing

	Conclusion

